GEOLOGICAL STORAGE OF CO₂ IN KOREA

2011.6.7

Jeong Chan Kim

Introduction

 Current Status of CO₂ Geologic Storage Research
Site Screening and Selection
Basic Lab. and Field Research

 Future Plans of CO₂ Geological Storage

Introduction

SOR R

CO₂ Emission Statistics

	BAU	2005
Scenario 1	-21%	+8%
Scenario 2	-27%	0
Scenario 3	-30%	-4%

Introduction

Major CO₂ Emission Sources

Emission by Sector

- In Korea, the most important point for CCS launching is to find suitable storage sites (reservoirs).
- There is no large-scale (commercial-scale) oil or gas field in the Korean Peninsula, although recently several smallscale gas fields have been found in the offshore region.
- The Korea Government tries to not only develop CO₂ storage technologies (injection, monitoring etc), but also to find good CO₂ reservoirs.

Onshore/nearshore sedimentary basins

Assessment of Storage Potential (Gyeongsang Basin)

N 정	분지 후포분지 포항분지 지
	100 km

		800 m ~	예상 최대 심	토	800 m- 2000 m		
		잠재 저장암의 부피 (km³)	잠재 저장 능력 (백만톤)	편차 (백만톤)	잠재 저장암의 부피 (km ³)	잠재 저장 능력 (백만톤)	편차 (백만톤)
신동 층군	진주층	1,160	97	635	358	208	146
	하산동층	3,065	2,369	1,677	536	299	212
	낙동층	4,605	2,776	2,136	783	341	262

(Source: Lee, SNU)

Cenozoic Miocene-Pilocene Deposits

AGE	SEISMIC STRATIGRAPHIC UNIT		CONFIGURATION	CORE	LITHOLOGY																	
Quaternary	Unit Group A	Unit A-1	Subunit A-1a	continuous, high-amplitude, onlap	PROD-1	Mud																
			Subunit A-1b	transparent	PROD-2	Sand																
			Subunit A-1c	continuous, low-amplitude, erosional truncation	PROD-2	Sand/Mud																
			Subunit A-2a	continuous, low-amplitude, erosional truncation	PROD-2	Sand/Mud																
				Unit A-2	Subunit A–2b	continuous, high-amplitude, onlap	00ADP-50, 51, 52	Sand														
Tertiary	Unit Group B						Subunit B-1a	continuous, intermediate-amplitude, onlap		Mud												
		Unit B-1	Subunit B-1b	continuous, low-amplitude, prograding	00ADP-14, 34, 45	Sand/Mud																
			Subunit B-2a	discontinuous, low-amplitude		Sand/Mud																
		Unit B-2	Subunit B-2b	chaotic, transparent	00ADP-31, 32	Sand																
				Unit B-3		continuous, low-amplitude, onlap		Sand														
	Unit Group C	Unit Group C	Linit Group C			Unit C–1		continuous, intermediate-amplitude, onlap		Sand/Mud												
				Unit C–2		chaotic, transparent	00ADP-05,12, 20,	Conglomerate/Sand														
			Unit C-3		continuous, low-amplitude	23, 25	Sand/Mud															
																					Unit C-4	
Upper Paleozoic	Pyongan Group					Sand/Mud																
Lower Paleozoic	Choson Supergroup					Limestone/Shale																
Precambrian						Granitic gneiss																

AGE	SEISMIC STRATIGRAPHIC UNIT			PREDICTED LITHOLOGY	SUBBOTTOM UNIT	PREDICTED P-WAVE VELOCITY	
Quaternary	Unit Group A	Unit A-1	Subunit A-1a	Mud	Unit a	1500	
			Subunit A–1b	Sand		1650	
			Subunit A-1c	Sand/Mud			
		Unit A-2	Subunit A-2a	Sand/Mud	Unit d		
			Subunit A–2b	Sand			
	Unit Group B	Unit B-1	Subunit B-1a	Mud	Unit c	1550	
			Subunit B-1b	Sand/Mud	Linit d	1650	
		Unit B-2	Subunit B-2a	Sand/Mud	Offit d		
			Subunit B-2b	Sand	Linit e	1700	
Tertiary		Unit B-3		Sand	Onit e	1700	
	Unit Group C	Unit C-1		Sand/Mud		1800	
		Unit C-2		Conglomerate/Sand	Unit f		
		Unit C–3		Sand/Mud			
		Unit C-4		Conglomerate/Sand	Unit g	1900	
Upper Paleozoic	Pyongan Group			Sand/Mud		4275	
Lower Paleozoic	Choson Supergroup			Limestone/Shale		5925	
Precambrian				Granitic gneiss		3750	

Outcrops on land

Unconsolidated, coarse-grained sediments-possible reservoir?

Coring on land

3D Stratigraphic model

Potential CO₂ Storage Capacity: 900 Mton

Offshore Sedimentary Basins

- Three offshore sedimentary basins
 - West Sea Basin
 - Cheju Basin
 - Ulleung Basin
- Exploration
 - Partnered with international oil companies (91,079 L-km, 20 exploratory wells since 1969)
 - KNOC(Korea National Oil Corporation) (186,278 L-km, 23 exploratory wells since 1983)
- Production
 - Discovered gas in Ulleung Basin

(250 BCF & 1.7 mmbbls condensate)

Gorae-V Structure: Potential CO₂ storage site

- Located at the southwest margin of the Ulleung basin
- Subdivided into 5 sandy layers by intervening shale layers
- Storage capacity evaluation by KIGAM
 - Total pore volume: 1.0 bn m³
 - Effective capacity: 150 MtCO₂

Tertiary Kunsan Basin

Stratigraphic Correlation of the Tertiary Kunsan Basin

Tertiary Jeju Basin

Summary for site screening

- 1. Site screening for onshore/nearshore sedimentary basins is led by KIGAM.
- 2. Some basins (including Gyeongsang Basin and Bukpyeong Basin) might have enough CO₂ storage potential for pilot tests.
- **3.** Site screening for offshore sedimentary basins is led by KNOC.
- 4. Offshore sedimentary basins have a relatively good CO₂ storage potentials, but more surveys are needed for accurate CO₂ storage site characterization.

Basic Research of CO₂ Storage

- **1.** Development of CO₂ injection system
- 2. Pre-injection simulation of CO₂ reaction & migration
- 3. Geophysical basic research: resistivity & seismic tomography
- 4. Geochemical basic research: circulation of deep groundwater & survey of carbonated water
- 5. Mineral carbonation

Development of CO₂ Injection System

- \checkmark Design of CO₂ injection pump
- \checkmark Design of lab. scale above ground CO₂ injection system
- \checkmark Design of CO₂ injection well
- Site survey for installment of injection well
- \checkmark Planning of pilot injection well operation

Demonstration of 100,000/yr CO₂ Injection

CO₂ Injection Simulation in DOLGORAE Structure

- Seismic P-wave Measurement of core containing CO₂-Water
- Documentation of effects of P, T and CO₂ Saturation on Seismic P&S wave
- Seismic Tomography Simulation

Mineral carbonation

- Mineral carbonation experiment with industrial waste (gypsum, slag, cement and others)
- Mineral carbonate experiment with natural rocks and minerals (anorthosite, serpentine and wollastonite)
- Up-scaling of mineral carbonation plant(~100,000 ton/yr) and optimization of mineral carbonation process (planned)

Calcite formed by mineral carbonation with gypsum waste

Pilot-scale device for mineral carbonation in KIGAM

International Collaboration

Future Plan

Medium Scale Integrated CCS demonstration & Complete preparation for demonstration of commercial scale () 1MtCO₂) CO₂ storage plant until 2018

- ✓ Site screening & selection
- ✓ Detailed survey and geological characterization
- \checkmark Development of CO₂ injection system
- ✓ Various basic researches

 Enhancement of MMV(Monitoring, Mitigation and Verification) technologies

njected CO₂ dissolution (decreasing δ^{13} C in produced fluid) Injected CO₂: δ^{13} C = -34.0/ ∞ CO₂ + H₂O \longrightarrow H^{*} + HCO₃*

Thank you!

Source: National Oceanic and Atmospheric Administration (USA)